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A B S T R A C T

Background: Using multiple modalities of biomarkers, several machine leaning-based approaches have been
proposed to characterize patterns of structural, functional and metabolic differences discernible from multi-
modal neuroimaging data for Alzheimer’s disease (AD). Current investigations report several studies using
binary classification often augmented with local feature selection methods, while fewer other studies address the
challenging problem of multiclass classification.
New method: To assess the merits of each of these research directions, this study introduces a supervised
Gaussian discriminative component analysis (GDCA) algorithm, which can effectively delineate subtle changes
of early mild cognitive impairment (EMCI) group in relation to the cognitively normal control (CN) group. Using
251 CN, 297 EMCI, 196 late MCI (LMCI), and 162 AD subjects from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and considering both structural and functional (metabolic) information from magnetic re-
sonance imaging (MRI) and positron emission tomography (PET) modalities as input, the proposed method
conducts a dimensionality reduction algorithm taking into consideration the interclass information to define an
optimal eigenspace that maximizes the discriminability of selected eigenvectors.
Results: The proposed algorithm achieves an accuracy of 79.25 % for delineating EMCI from CN using 38.97 % of
Gaussian discriminative components (i.e., dimensionality reduction). Moreover, for detecting the different stages
of AD, a multiclass classification experiment attained an overall accuracy of 67.69 %, and more notably,
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discriminates MCI and AD groups from the CN group with an accuracy of 75.28 % using 48.90 % of the Gaussian
discriminative components.
Comparison with existing method(s): The classification results of the proposed GDCA method outperform the more
recently published state-of-the-art methods in AD-related multiclass classification tasks, and seems to be the
most stable and reliable in terms of relating the most relevant features to the optimal classification performance.
Conclusion: The proposed GDCA model with its high prospects for multiclass classification has a high potential
for deployment as a computer aided clinical diagnosis system for AD.

1. Introduction

In recent years, machine learning approaches have been applied in a
growing number of studies to characterize patterns of structural,
functional and metabolic difference discernible from multimodal neu-
roimaging data, such as magnetic resonance imaging (MRI) (Khedher
et al., 2015; Ofori et al., 2019; Vaithinathan et al., 2019; Tabarestani
et al., 2019; Forouzannezhad et al., 2019; Fang et al., 2018) and posi-
tron emission tomography (PET) (Tabarestani et al., 2019;
Forouzannezhad et al., 2019; Fang et al., 2018; Moradi et al., 2015;
Zhang et al., 2012). The high-dimensionality nature of neuroimaging
data often raises a necessity for dimensionality reduction and feature
selection to obtain an optimal decision space. The results reported in
some recent studies indicate that appropriate decision-making methods
could improve the classification accuracy regardless of the sample size
(Chu et al., 2012; Liu et al., 2014; Zhu et al., 2017; Ota et al., 2015).

Voxel-based MRI studies have demonstrated that widely distributed
cortical and subcortical brain regions show atrophy patterns in mild
cognitive impairment (MCI), preceding the onset of Alzheimer’s disease
(AD) (Li et al., 2019; Loewenstein et al., 2017; Plant et al., 2010; Zhang
et al., 2019; Sun et al., 2019). A recent study has indicated the clinical
utility of PET imaging for differential diagnosis in early onset dementia
in support of clinical diagnosis of participants with AD and noncarrier
APOE ε4 status who are older than 70 years (Ossenkoppele et al., 2015).
Empirical evidence suggests that appropriate feature selection could
preserve the complementary inter-modality information; therefore, the
proposed dimensionality reduction model shows great potential for
extracting relevant information from all modalities associated with the
progression of AD. Currently, the Principal Component Analysis (PCA)
model remains the most widely used method in dimensionality reduc-
tion and feature selection tasks (Farzan et al., 2015; Lopez et al., 2011).
However, for machine learning tasks like classification and regression
analyses, PCA is applied as an unsupervised method not considering the
interclass information, such as data labels and target values; therefore,
in many cases the consequently implemented feature selection methods
may not be able to find the optimal decision spaces for the corre-
sponding tasks. Moreover, the importance of PCA generated compo-
nents is estimated by the variance, which are not often equivalent to the
significance of those components in machine learning tasks.

This study aims to introduce a supervised dimensionality reduction
algorithm to characterize the important Gaussian discriminative com-
ponents with respect to the structural, functional or metabolic mea-
surements as observed in the MRI-PET combination associated with
different stages of AD, focusing on the prodromal stage of MCI (Curiel
Cid et al., 2019; Loewenstein et al., 2018). The stage of MCI is sub-
divided into two stages, early MCI (EMCI) and late MCI (LMCI), as
defined in the Alzheimer’s disease Neuroimaging Initiative (ADNI) data.
Since alleviation of specific symptoms is possible through therapeutic
interventions for some patients in the early or middle stages of AD,
effective diagnosis of EMCI from cognitively normal control (CN) group
is essentially important for the planning of early treatment. However,
instead of utilizing PCA computed variances to determine the sig-
nificances of different components, the proposed Gaussian dis-
criminative component analysis (GDCA) makes use of Gaussian dis-
criminant analysis (GDA) classifiers to reveal the discriminability of
different components in terms of each component’s performance

obtained by a designate machine learning task. This process is shown to
lead to stable, reliable and accurate dimensionality reduction in mul-
timodal neuroimaging biomarkers for effective classification, enhanced
diagnosis and the monitoring of disease progression.

2. Materials

The information of the subjects used in this study and the MRI data
preprocessing and MRI/PET registration procedure are presented in this
section.

2.1. Participants and clinical data

The data used in conducting this study were collected from the
ADNI database (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neuropsycholo-
gical assessment can be combined to can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer's
disease (AD).

A total of 906 subjects were considered for this study, which were
categorized into groups of CN (251), EMCI (297), LMCI (196) and AD
(162). All individuals underwent structural MRI and Florbetapir (F18-
AV45) PET imaging, where the time gap between the two imaging
modalities was less than 3 months. Details of MRI and AV45 PET data
acquisition can be found on the ADNI website. Summary statistics and
participants counts are listed in Table 1.

2.2. Image processing

2.2.1. MRI data preprocessing
The FreeSurfer (Version 5.3.0) was firstly performed under Linux

system (centos4_x86_64) to transform the original MRI to the standard
MNI 305 space, yielding the image referred to as T1.mgz, which is used
as the reference image in the registration procedure, followed by skull-
striping, segmenting, and delineating cortical and subcortical regions
with the corresponding image result termed as aparc + aseg.mgz.

Table 1
Participant Demographic and Clinical Information.

CN (n = 251) EMCI (n =
297)

LMCI (n =
196)

AD (n = 162)

F/M 128/123 132/165 85/111 68/94
Age_PETb 75.5(6.5)a 71.5(7.4) 73.8(8.1) 74.9(7.8)
Age_MRIb 75.3(6.6) 71.3(7.4) 73.6(8.0) 74.7(7.8)
Education 16.43(2.6) 15.99(2.7) 16.31(2.7) 15.76(2.7)
MMSEc, d 29.04(1.2) 28.32(1.6) 27.61(1.9) 22.77(2.7)
RAVLT_immediatec, d 45.3(10.6) 39.5(10.8) 33.2(10.8) 22.3(7.0)

a Values are represented as mean(sd), except gender (F for female, M for
male), which are frequencies instead.

b Significant group differences (ANOVA for continuous and Chi-square test
for categorical values, significance level is 0.05 by default).

c Significant group differences (ANCOVA adjusted for Age_PET).
d Significant differences for all between-group post-hoc tests (Tukey’s HSD

test).
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Derived from the images, the following three shape measures were then
calculated as morphological features on each of the 68 FreeSurfer la-
beled cortical regions for both hemispheres (34 per hemisphere): 1)
cortical thickness, 2) surface area, and 3) cortical volume. Since version
5.3 of FreeSurfer was available, we tested the same data with FreeSurfer
6.0 and found minimal differences ranging from 1 to 5 % and showing
no statistical differences in terms of standardized uptake value ratio
measurements (SUVRs).

2.2.2. MRI and PET registration
With 12 degrees of freedom (DOF) onto the postprocessed T1 image,

the AV45 PET was linearly registered (using trilinear interpolation), so
that the regional amyloid deposition and gray matter atrophy are com-
pared directly (i.e., thickness for cortical regions (Curiel et al., 2018;
Duara et al., 2019; Li et al., 2017a; Westman et al., 2013)), using the
FMRIB Software Library (FSL) (Jenkinson et al., 2012). Moreover, in
order to gain as much information as possible from PET images, which
have relatively low resolution, the original AV45 PET with skull was
utilized in this step. This registration process introduced in a recent study
(Li et al., 2017b) guaranteed that AV45 PET image had the same seg-
mentation and parcellation as the MRI image. Combined with aparc +
aseg.mgz images, the registered AV45 PET was inspected to obtain the
mean standardized uptake values (SUV) for all 68 FreeSurfer labeled
cortical regions. The SUV of the whole cerebellum, including 4 regions of
interest (left/right cerebellum cortex and left/right white matter), was
used as the reference region. Finally, regional SUVs of those 68 cortical
regions were normalized by the SUV of the whole cerebellum to get the
cortical-to-cerebellum SUVRs. Accordingly, overall there are 4 different
types of neuroimaging features associated with each of the 68 cortical
regions, yielding 272 (4 × 68) features for each subject in the dataset.

3. Methods

After obtaining all needed features derived from raw multimodal
neuroimaging data, as aforementioned, a 272-dimensional feature vector
was generated for each subject in the data set. In this section, the pro-
posed GDCA algorithm is presented for the effective dimensionality re-
duction and early diagnosis of AD. The standard PCA is applied to the
original data to find the principal components. Then, the discriminability
of each component is estimated by a one-dimensional GDA classifier, and
consequently, all components are sorted in order of the corresponding
classification performance. Finally, the recursive feature elimination
(RFE) is employed to determine the optimal dimensionality reduction of
the Gaussian discriminant components in the classification outcome
Fig. 1. demonstrates the flowchart of the proposed GDCA model.

3.1. Gaussian discriminative component analysis

3.1.1. Eigenvectors of the covariance matrix
The proposed classification problem can be formulated by having the

machine learn to distinguish between CN ( =y 0), EMCI ( =y 1), LMCI
( =y 2), and AD ( =y 3), based on the extracted features x n. In order
to determine the potential directions of Gaussian discriminative com-
ponents of all features, the standard PCA method is carried out. Prior to
running PCA, the data need to be normalized as follows:

=x x µ( )/ (1)

where µ n and n are the mean vector and standard deviation
vector of all data, respectively. This process zeros out the mean of the
data, and rescales each feature to have unit variance, which ensures
different features to have the same scale. After normalization, the cov-
ariance matrix can then be computed utilizing the normalized data by
the formula below:

=
=m

x x1

i

m

i i
T

0 (2)

where m is the total number of data points considered and xi
T is the

transpose of the normalized data point xi. Then to project the original
data into a k-dimensional subspace (k n), the eigenvector
u j k( )j

n of the covariance matrix can be computed to obtain the
transformed features x k.

3.1.2. Supervised dimensionality reduction
As indicated earlier, the PCA model sorts the extracted eigenvectors

(i.e., the direction of principal components) based on the variance re-
presented by each eigenvector, without considering any information
from the labels of data as an unsupervised algorithm. But, in general,
only reducing the dimensionality to retain as much as possible of the
variance cannot help in deciding the optimal subspace towards an op-
timal performance if a supervised machine learning scenario is con-
templated. As a consequence, the proposed method capitalizes on a
supervised dimensionality reduction model making use of a GDA-based
classifier. Given the eigenvectors which were computed based on the
covariance matrix given in (2), the GDA model is trained on each new
feature in the transformed space to determine the discriminability of

Fig. 1. General flowchart of the proposed GDCA dimensionality reduction al-
gorithm.
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each component according to the corresponding classification perfor-
mance, subsequently sorting the extracted principal components in
order of their discriminability.

GDA can model p x y( | ), the distribution of the feature vector x in
the transformed feature space given y {0,1, 2,3}, assumed to be dis-
tributed according to a Gaussian distribution, with the generalized
density function given in (3):

=p x µ x µ x µ( ; , ) 1
(2 ) | |

exp 1
2

( ) ( )
n

T ' 1

(3)

where µ k is the mean vector in the new transformed feature space,
is the new covariance matrix, | | and ' 1 denote the determinant and

inverse matrix of , respectively. To determine the discriminability of
each component, since x 1, the µ is the mean of the transformed
feature, and is the variance of the transformed feature. After mod-
elling p x y( | ), Bayes rule is used to derive the posterior distribution on y
given x as:

=p y x p x y p y
p x

( | ) ( | ) ( )
( ) (4)

Here, p y( ) denotes the class prior distribution, which cannot be de-
termined when given a certain subject, so it is assumed to be absolutely
random (for all a b, = = =p y a p y b( ) ( )). Furthermore, to make a
prediction, it is not necessary to calculate p x( ), since

= =p y x p x y p y
p x

p x y p yargmax ( | ) argmax ( | ) ( )
( )

argmax ( | ) ( )
y y y (5)

Therefore, for classification purposes, the following formula is used
instead:

=p y x p x yargmax ( | ) argmax ( | )
y y (6)

3.1.3. Recursive component elimination
The aforementioned classifier is applied to each component, so that

for each eigenvector, the transformed features can be ranked in terms of
classification outcome using cross validation. In this study, the classi-
fication accuracy is used as the key metric to measure performance,
which means the discriminability of each component is determined by
its corresponding classification accuracy expressed as follows:

= +
+ + +

Accuracy TP TN
TP FP TN FN (7)

which is the sum of True Positives (TP) and True Negatives (TN) di-
vided by the sum of TP, False Positives (FP), TN, and False Negatives
(FN).

Setting the computed accuracies as assigned weights to dis-
criminative components, recursive feature elimination (RFE) is per-
formed to select the optimal Gaussian discriminative components by
recursively considering smaller and smaller sets of components. First,
the entire set of components were applied to the classifier and esti-
mated by the cross-validation performance. Then, the least important
component is eliminated from current set of components. That proce-
dure is recursively repeated on the pruned set until the desired set of
Gaussian discriminative components is found with an optimal classifi-
cation performance.

3.2. Classification based on GDCA

From the proposed GDCA dimensionality reduction model, the op-
timal components are obtained in terms of the classification perfor-
mance (i.e., the accuracy of that set of components selected), and would
then be applied to other classification algorithms. Some other metrics
are used as well, since, as a clinical application, the classification per-
formance may not only be evaluated by the accuracy, but could also
rely on precision, recall (or sensitivity) and specificity. The F1 score is

also a widely used measure of performance in statistical analysis of
binary classification, by which both precision and recall are taken into
consideration. The formulas used to calculate these four metrics are
expressed below:

=
+

Precision TP
TP FP (8)

=
+

Recall TP
TP FN (9)

=
+

Specificity TN
TN FP (10)

= × ×
+

F Precision Sensitivity
Precision Sensitivity

1 2
(11)

In order to assess the ability of the obtained transformed feature
space in performance improvement, several widely used classification
algorithms are applied on the original feature space as well as the di-
mensionality reduced new feature space, including linear support
vector machines (SVM), multilayer perceptron (MLP), and gradient
boosting (GB) classifiers. To demonstrate the advantage of the proposed
GDCA over other widely used dimensionality reduction methods, PCA,
LASSO and univariate feature selection are carried out on the best
performed classifier among the ones mentioned above.

4. Experiments and results

The focus of this study is placed on demonstrating how the proposed
dimensionality reduction model can determine the most discriminative
components associated with the progression of MCI and improve the
classification performance. Also, in order to predict the progression of AD,
a multiclass classification was carried out on those three groups of AD
patients (i.e., EMCI, LMCI, AD), therefore, we could further compare the
proposed dimensionality reduction with other widely used methods based
on the multiclass classification performance. Scikit-learn, free software
machine learning library, was used to implement all classification algo-
rithms with 9-fold cross validation procedure and built-in experiment pi-
peline (Pedregosa et al., 2011). In the classification experiments, all sub-
jects were randomly split into training, validation, test sets with 80 % of
the data used for training, 10 % for cross validation, and 10 % for the hold-
out true test. The 9-fold cross validation was used to determine the optimal
set of features/components with the best validation performance, in terms
of which training/validation data split yielded the best performance,
therefore, the final performance comparisons were based on the hold-out
true test using the same training data to evaluate the model on unseen
data. In order to demonstrate the advantage of the proposed GDCA
method over other dimensionality reduction methods, the same setup was
carried out using PCA, LASSO, univariate feature selection and the pro-
posed GDCA methods. Finally, a computer aided diagnosis (CAD) appli-
cation for detecting different stages of AD was presented to reveal the
potential of this GDCA model to be deployed as a CAD system.

4.1. Gaussian discriminative components

Given the eigenvectors of the covariance matrix calculated by the
whole data, Table 2 shows the classification accuracy of top-10 Gaus-
sian discriminative components based on the binary classification (i.e.,
CN vs. EMCI, EMCI vs. LMCI) on the training/validation data split ob-
taining the best performance, and the PCA rank of these components
are also provided to demonstrate the difference between GDCA and
PCA. As shown in Table 2, the principal components with higher var-
iance do not necessarily yield better performance in the classification
task than those with lower variance, which may help in delineating the
subtle changes associated with CN vs. EMCI and with EMCI vs. LMCI.

With the Gaussian discriminative components ranked, the RFE was
applied on the validation data to find the optimal set of components
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that yielded the best validation performance in terms of overall clas-
sification accuracy. Consequently, these optimal discriminative com-
ponents were used to evaluate the proposed GDCA on the held-out test
data using the same training set. Fig. 2(a) illustrates the CN vs. EMCI
learning curves of the training, validation and testing when increasing
the number of Gaussian discriminative components involved in the
classifier. It can be observed that the proposed model was able to learn
the generic discriminative components through the cross validation and
performed similarly on the held-out test data. Based on the best
training/validation data split, the highest accuracy of 79.25 % was
obtained by using the first 106 Gaussian discriminative components.
The GDCA results are shown in Table 3, which also sets a performance
benchmark for further classification performance comparison using
several different machine learning algorithms. Another challenging task
of detecting different stages in AD is in distinguishing LMCI from EMCI,
because LMCI may have higher risk in developing AD. Thus, EMCI vs.
LMCI classification was carried out following the same procedure, and
the results are illustrated in Table 3 and Fig. 2(b), where the best cross
validation performance was attained by including the first 99 Gaussian
discriminative components into the model with an accuracy of 83.33 %.

4.2. Binary classification performance comparison

By applying the relevant classifiers (i.e., SVM, MLP, and GB) to the
original data and to the dimensionality-reduced data, the corresponding
results are given in Table 4. Unlike the proposed GDCA, these algorithms
may give us various results due to the random initialization. The classi-
fication experiments were run multiple times on the best training/vali-
dation data split, and for each classifier, the best performing model was
selected, then the corresponding test results were reported in Table 4. It
can be observed that after introducing the proposed dimensionality re-
duction model, all the selected classifiers achieved better performance on
the transformed feature space than obtained on the original features,
which adds credence to the validity of the proposed GDCA model.
Moreover, although state-of-the-art MLP and GB algorithms established
better performance than the GDA algorithm on the original features as a
result of the underlying feature selection process, for both CN vs. EMCI
and EMCI vs. LMCI, they did not surpass the benchmark performance
yielded by the proposed GDCA algorithm. However, because of the
random initialization, classification algorithms like SVM, MPL, GB may
not always achieve the global optimal solution, only the GDA classifier is
applied here for the multiclass classification experiment.

As another widely used metric in choosing binary classification
models, the receiver operating characteristic (ROC) curve and the area
under the curve (AUC) were used to measure the classification perfor-
mance. The AUC score can reveal the discriminability of a classification
model and to indicate if the false positive and true positive rates
achieved by a model are significantly above random chance. The ROC
curves and the corresponding AUC scores of hold-out tests on original

and transformed feature spaces are demonstrated in Fig. 3, and it can be
observed that, after carrying out the proposed GDCA model, the AUC
scores improved significantly by 0.15 for CN vs. EMCI classification and
by 0.31 for EMCI vs. LMCI classification.

In Table 5, the results obtained by the proposed GDCA model are
compared with those obtained using most recent state-of-the-art
methods based on ADNI data (Pei et al., 2018; Hett et al., 2019; Jie
et al., 2018a; Jie et al., 2018b; Wee et al., 2019; Yang et al., 2019; Kam
et al., 2019). It should be noted that, as shown in Table 5, although
most of the studies used relatively small dataset, the proposed model
still achieved overall best performance for both CN vs. EMCI classifi-
cation and EMCI vs. LMCI classification; and for the only study having
the relatively large number of subjects (Wee et al., 2019), the proposed
study obtained significantly better performance.

4.3. EMCI vs. LMCI vs. AD multiclass classification

The same pipeline was followed for the multiclass classification
experiments, and since the F1 score, precision, and recall would no
longer be available, the confusion matrix was used instead to evaluate
the performance with each row corresponding to the true class. The
diagonal elements of the confusion matrix represent the number of
points for which the predicted label is equal to the true label, while off-
diagonal elements are those that are misclassified by the classifier.

Fig. 4 demonstrates the learning curve of the multiclass classifica-
tion experiment using the proposed GDCA, where the best cross vali-
dation performance was achieved by using the first 90 Gaussian dis-
criminative component. It can be observed that the learning curve
associated with the hold-out test is closer to the learning curve of cross

Table 2
Classification accuracy of top-10 Gaussian discriminative components and their
corresponding PCA rank.

CN vs EMCI EMCI vs. LMCI

GDCA Rank Accuracy PCA Rank GDCA Rank Accuracy PCA Rank

1 65.45 % 22 1 68.00 % 204
2 65.45 % 186 2 66.00 % 9
3 63.64 % 64 3 66.00 % 35
4 63.64 % 148 4 66.00 % 105
5 63.64 % 207 5 66.00 % 132
6 63.64 % 241 6 64.00 % 64
7 63.64 % 262 7 64.00 % 170
8 63.64 % 267 8 64.00 % 239
9 61.82 % 6 9 62.00 % 3
10 61.82 % 62 10 62.00 % 74

Fig. 2. The learning curves of the training, validation and testing with different
numbers of Gaussian discriminative components: (a) CN vs. EMCI classification;
(b) EMCI vs. LMCI classification.
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validation in comparison to the learning curve results shown in Fig. 2,
since there were three classes instead of two classes, which enabled the
model to learn more generic discriminative components across all three
classes.

Fig. 5 shows the confusion matrices of the hold-out test on the
original features and GDCA transformed features. The overall classifi-
cation accuracy using the transformed features was 67.69 %, compared
to 53.85 % if all original features were utilized. As shown in Fig. 5, after
applying the proposed GDCA model, the classifier could more precisely
distinguish LMCI and AD from EMCI group, so that the overall classi-
fication performance was improved significantly. Additionally, Table 6
converted the multiclass classification results to binary classification
results of MCI vs. AD, showing that the proposed method could effec-
tively discriminate AD from MCI with a 31.25 % increase on recall.

4.4. Dimensionality reduction performance comparison

Since the proposed GDCA method is capable of defining the most
discriminative directions of all eigenvectors, noted improvements were
obtained in the classification results. To demonstrate how this process
differs from other widely used dimensionality reduction methods, the
same procedure was implemented for the EMCI vs. LMCI vs. AD mul-
ticlass classification task by applying the PCA, LASSO, univariate fea-
ture selection and proposed GDCA methods. The PCA method, as
aforementioned, utilizes PCA computed variances to determine the
significances of the principal components. Since linear models reg-
ularized with the L1 norm (i.e., LASSO) have sparse solutions, and the
estimated coefficients could be employed in measuring the importance
of each feature, therefore, which can also be used to select the most
important features. For univariate selection method, the eigenvectors of
the covariance matrix are not computed, and instead it selects the best
features based on univariate statistical tests. In this study, the analysis
of variance (ANOVA) was performed as the univariate statistical test to
determine the significances of the different features.

Moreover, rather than adding one feature at a time, the different
percentiles were used to illustrate the classification performance of
these dimensionality reduction methods varying the percentile of fea-
tures selected. The same GDA classifier was applied to all these four
dimensionality reduction methods so as to eliminate any bias. Fig. 6
shows the 9-fold cross validation results of these methods.

As can be observed from the results shown in Fig. 6, the ANOVA-
based univariate selection method reached quickly an optimal average

cross validation accuracy with 5 % of the features used and seems to
outperform all other methods when 10 % or less of the features are
used. The nature of the Univariate performance graph with its rapid
decline in performance with more features included misses out on that
optimal solution that is reached out by the proposed GDCA methods
when 20 % of the features are used. At 15 % of the features used, both

Table 3
Benchmark CN vs. EMCI and EMCI vs. LMCI classification results based on the GDCA.

Classification CN vs. EMCI EMCI vs. LMCI

Performance F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall

Cross validation 86.15 % 83.64 % 80.00 % 93.33 % 92.31 % 94.00 % 94.74 % 90.00 %
Hold-out test 80.70 % 79.25 % 82.14 % 79.31 % 77.78 % 83.33 % 82.35 % 73.68 %

Table 4
Binary classification performance comparison of original features and GDCA-transformed features.

Task Feature Original Features Transformed Features

Classifier F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall

CN vs. EMCI SVM 72.73 % 66.04 % 64.86 % 82.76 % 78.69 % 75.47 % 75.00 % 82.76 %
MLP 75.41 % 71.70 % 71.88 % 79.31 % 78.57 % 77.36 % 81.48 % 75.86 %
GB 75.41 % 71.70 % 71.88 % 79.31 % 77.19 % 75.47 % 78.57 % 75.86 %
GDA 66.67 % 64.15 % 67.86 % 65.52 % 80.70 % 79.25 % 82.14 % 79.31 %

EMCI vs. LMCI SVM 54.05 % 64.58 % 55.56 % 52.63 % 65.00 % 70.83 % 61.90 % 68.42 %
MLP 59.46 % 68.75 % 61.11 % 57.89 % 72.73 % 75.00 % 64.00 % 84.21 %
GB 48.48 % 64.58 % 57.14 % 42.11 % 60.00 % 75.00 % 81.82 % 47.37 %
GDA 52.00 % 50.00 % 41.94 % 68.42 % 77.78 % 83.33 % 82.35 % 73.68 %

Fig. 3. ROC curves and AUC scores on original features and GDCA transformed
features: (a) CN vs. EMCI classification; (b) EMCI vs. LMCI classification.
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LASSO and GDCA performed well and they were better in performance
than the PCA and the Univariate methods. However, with more features
added, the decline in performance is more gradual in the proposed
GDCA method than it is for LASSO.

Overall, the proposed GDCA method obtained an optimal hold-out
test accuracy of 65.62 % with 20 percent of all features, which is better
than the hold-out test performance achieved by the LASSO (56.25 %),
the Univariate (57.81 %) and the PCA (62.50 %) methods. It also in-
dicated that making use of the eigenspace rather than the original
feature space could help the model attain more generally selected fea-
tures to avoid overfitting on the training data, which resulted in better
hold-out test performance yielded by the GDCA and the PCA methods.

4.5. Computer aided diagnosis based on GDCA

The previous sections have indicated that the proposed GDCA model
was able to identify the most discriminative components associated

Table 5
CN vs. EMCI and EMCI vs. LMCI classification performance comparison.

Classification Subjects (CN/EMCI/LMCI) CN vs. EMCI EMCI vs. LMCI

Performance Accuracy Sensitivity Specificity AUC Accuracy Sensitivity Specificity AUC

Pei et al. (2018) -/18/18 – – – – 70.00 % – – 0.7088
Hett et al. (2019) 62/65/34 – – – – 70.80 % – – 0.6240
Jie et al. (2018a) 50/56/43 – – – – 74.80 % – – 0.7200
Jie et al. (2018b) 50/56/43 78.30 % 74.00 % 82.10 % 0.7710 78.80 % 82.10 % 74.40 % 0.7830
Wee et al. (2019) 300/314/208 53.00 % 60.40 % 55.00 % – 63.10 % 61.30 % 77.60 % –
Yang et al. (2019) 29/29/18 77.59 % 59.09 % – 0.6849 76.60 % 66.20 % – 0.7682
Kam et al. (2019) 48/49/- 76.07 % 76.27 % 75.87 % – – – – –
Proposed 251/297/196 79.25 % 79.31 % 79.17 % 0.7960 83.33 % 82.35 % 89.66 % 0.8947

Fig. 4. The learning curves of the training, validation and testing with different
numbers of Gaussian discriminative components for EMCI vs. LMCI vs. AD
classification.

Fig. 5. EMCI vs. LMCI vs. AD classification confusion matrices: (a) All features were used; (b) GDCA-transformed features were used.

Table 6
MCI vs. AD classification performance by converting the EMCI vs. LMCI vs. AD
classification results.

Features F1 Score Accuracy Precision Recall

Original 64.52 % 83.08 % 66.67 % 62.50 %
Transformed 78.95 % 87.69 % 68.18 % 93.75 %

Fig. 6. EMCI vs. LMCI vs. AD cross validation performance of different di-
mensionality reduction methods varying the percentile of features selected.
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with different stages of AD as a multiclass classification problem. But, in
order to apply the proposed model to a practical CAD system, the
trained model should be able to include the CN group, allowing a given
subject in the classification process to belong to any of the 4 groups: CN,

EMCI, LMCI and AD. Therefore, in this section, a multimodal multiclass
classification neuroimaging CAD application involving all four groups
(CN, EMCI, LMCI and AD) is presented utilizing the proposed GDCA
model.

The learning curve of the GDCA-based CAD application is shown in
Fig. 7, where the best cross validation performance was obtained by using
the first 133 Gaussian discriminative components. Now, since more in-
terclass information was involved during the training, more generic dis-
criminative components across all four classes were captured, which re-
sulted in a small gap between the learning curves of the cross validation
and the hold-out test. Fig. 8 demonstrates the confusion matrices of the
hold-out test on the original features and GDCA transformed features. As
the most complicated task in AD classification, the accuracy of 53.93 %
was attained, which reached only 41.57 % when all original features were
used. Making use of GDA, Fig. 9 illustrates the 3-dimensional visualization
by projecting the high dimensional data onto the affine subspace gener-
ated by the estimated class means of all classes. In Figs. 8 and 9, it can be
observed that, after applying the proposed GDCA model, the classifier
could detect the subtle difference between MCI group (i.e., EMCI and
LMCI) and CN group as well as MCI group and AD group more effectively,
in particular, more CN and AD subjects were correctly detected.

Furthermore, in order to illustrate the performance improvement of

Fig. 7. The learning curves of the training, validation and testing with different
numbers of Gaussian discriminative components for the proposed GDCA-based
CAD application.

Fig. 8. CN vs. EMCI vs. LMCI vs. AD classification confusion matrices: (a) All features were used; (b) GDCA-transformed features were used.

Fig. 9. CN vs. EMCI vs. LMCI vs. AD 3-dimensional visualization by projecting the data onto the affine subspace: (a) All features were used; (b) GDCA-transformed
features were used.
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the GDCA-based CAD application, some extension of ROC to multiclass
classification were carried out, including, one-against-rest ROC curve
for each class, micro-averaging and macro-averaging ROC curves.
Micro-averaging considers each element of the label indicator matrix as
a binary prediction, while macro-averaging gives equal weight to the
classification of each label. The ROC curves and the corresponding AUC
scores are demonstrated in Fig. 10, and it can be observed that, after
carrying out the proposed GDCA model, the micro-averaging and
macro-averaging AUC scores were increased significantly by 9.71 %

and 8.73 %, respectively. For AD vs. rest and CN vs. rest, the perfor-
mances were also improved significantly, and AUC scores of 0.7919 and
0.9092, respectively were achieved.

As shown in Fig. 9, after applying the GDCA model, the classifica-
tion improvement was attributed to more of the CN and AD subjects
correctly distinguished from EMCI and LMCI groups. Therefore, in
order to demonstrate the performance improvement on CN vs. MCI vs.
AD classification, the CAD results of EMCI and LMCI were combined
together as MCI. By combining those results, the confusion matrices on
the original features and GDCA transformed features are shown in
Fig. 11. After combining, the overall classification accuracy on original
and transformed features was 57.30 % and 66.29 %, respectively. And
more notably, if the MCI and AD results were further combined as
diseased group, it indicates that the proposed GDCA-based CAD appli-
cation can effectively discriminate diseased subjects from the CN group
with an accuracy of 75.28 %, an F1 score of 82.51 %, a precision of
83.87 %, and a recall of 81.25 %. These results show that the proposed
GDCA model has a high potential for use as a clinical CAD system using
multimodal neuroimaging data.

5. Conclusions

In this study, a novel GDCA dimensionality reduction algorithm was
proposed to characterize the optimal Gaussian discriminative compo-
nents of the original high dimensional feature space, maximizing as a
consequence the discriminability of selected eigenvectors. The CN vs.
EMCI classification results indicated that the proposed supervised
method was able to delineate the subtlest changes associated with the
EMCI group. After transforming the original features to the optimal
Gaussian discriminative components, a high accuracy of 79.25 %, an F1
score of 80.70 % and an AUC score of 0.7960 were obtained, which
showed high potential of the proposed method for clinical diagnosis of
the early stage of AD. For EMCI vs. LMCI classification, the proposed
model achieved a high accuracy of 83.33 %, an F1 score of 77.78 %,
and an AUC score of 0.8947. These results of CN vs. EMCI classification
and EMCI vs. LMCI classification are considered as the best classifica-
tion performance obtained so far.

A multiclass classification was also carried out for the detection of
the different stages in AD (i.e., EMCI, LMCI, and AD). An overall ac-
curacy of 67.69 % was achieved, and moreover, the proposed method
was able to distinguish AD from MCI with an accuracy of 87.69 % and a
recall of 93.75 %, respectively. The comparison with other widely used
dimensionality reduction methods indicated that the proposed method
could significantly reduce the dimensionality of the data and still ac-
complish an effective classification performance. A CAD application

Fig. 10. ROC curves to multiclass classification and AUC scores for the pro-
posed GDCA-based CAD application: (a) All features were used; (b) GDCA-
transformed features were used.

Fig. 11. CN vs. MCI vs. AD classification confusion matrices by combining EMCI and LMCI: (a) All features were used; (b) GDCA-transformed features were used.
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based on the proposed GDCA model was also presented, which attained
an overall accuracy of 66.29 % for CN vs. MCI vs. AD classification, and
more notably, for distinguishing diseased subjects (i.e., MCI and AD)
from the CN group, with an accuracy of 75.28 %. Future work will
ultimately focus on taking advantage of the proposed GDCA algorithm
to build a CAD system that could help in delineating the EMCI group in
a multiclass classification, a process that could be helpful in the plan-
ning of early treatment and therapeutic intervention.
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